

Convegno di Medio Termine dell'Associazione Italiana di Ingegneria Agraria

Belgirate, 22-24 settembre 2011

Gestione e controllo dei sistemi agrari e forestali

Relazione tra pressione e densità durante il processo di densificazione della frazione solida separata del refluo zootecnico

A. Facello, N. Pampuro, E. Cavallo

INTRODUZIONE

- La tendenza alla specializzazione delle aziende zootecniche ha determinato la concentrazione della produzione di S.O. e di nutrienti in aree circoscritte
- La tecnica di gestione dei liquami più comunemente diffusa consiste nel loro spandimento sui terreni agrari

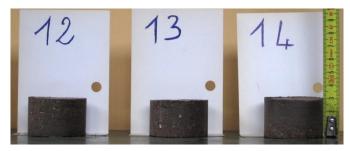
Inquinamento da nitrati nelle acque superficiali e di falda particolarmente acuto nelle aree definite come Zone Vulnerabili da Nitrati (91/676/CEE)

> Sono state sviluppate diverse tecnologie per prevenire l'inquinamento delle acque da nitrati

una di queste è la separazione solido-liquido dei liquami

Liquido chiarificato ---- spandimento in campo, fertirrigazione

Frazione solida ---- valorizzata ed esportata al di fuori delle ZVN


bassa densità

trasporto conveniente solo per brevi distanze (50-70 km)

IL PROCESSO DI DENSIFICAZIONE

Il processo di densificazione consente di incrementare la densità delle biomasse da valori iniziali pari a 40÷200 kg·m⁻³ a valori finali anche maggiori di 800 kg·m⁻³ (McMullen *et al.*, 2005) contribuendo così alla riduzione dei costi di trasporto, movimentazione e stoccaggio (Kaliyan & Vance Morey, 2009).

Due possibili tecniche per incrementare la densità di un materiale particolato:

- 1) agglomerazione per centrifugazione
 - 2) <u>agglomerazione per pressione</u>

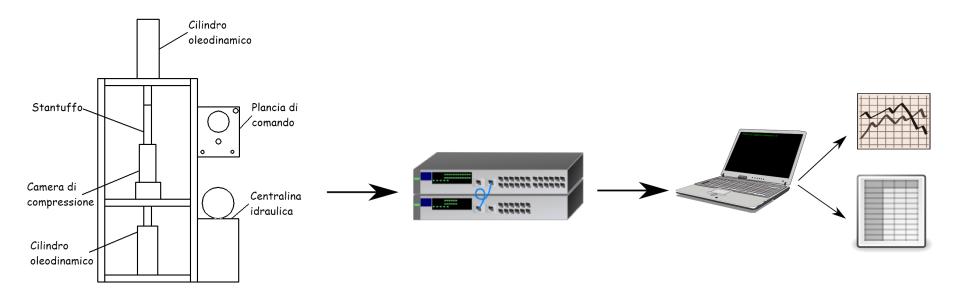
estrusione (forma cilindrica; ø 20÷100 mm)

pellettizzazione (forma cilindrica; ø 4,8÷19 mm)

bricchettaggio (forma "a cuscino"; dimensione 10÷40 mm)

SCOPO DEL LAVORO

Valutazione dell'efficienza del processo di densificazione utilizzando il metodo di agglomerazione per pressione


Studio dell'influenza della pressione esercitata e del suo tempo di applicazione sulla densità finale dei materiali organici considerati

Confronto tra l'andamento teorico della densità in funzione della pressione applicata sui materiali (modello di Bailey) ed i valori ottenuti sperimentalmente

MATERIALI E METODI (1)

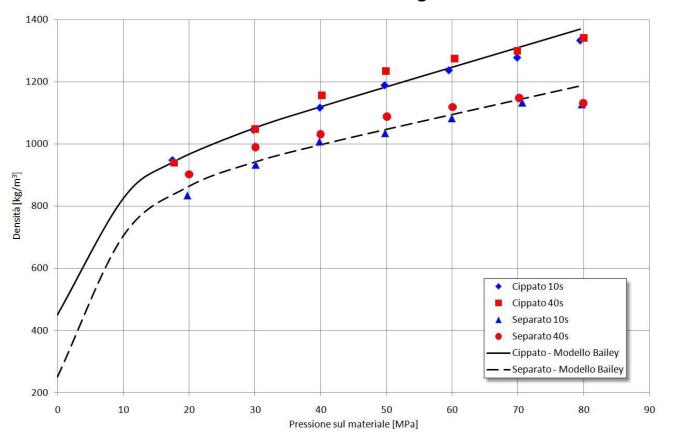
Processo di agglomerazione per pressione

Pressa	Trasduttori	Sistema di acquisizione
Pressione max materiale: 187 MPa	Forza: celle di carico 200 kN Max	N°4 canali analogici
Volume max camera: 440 cm³	Posizione: potenziometro 0÷500 mm	Sample rate fino a 10 ks/s
Tempo pressatura: 1÷210 s	Pressione: 0÷250 bar (olio) 0÷80 MPa (spinta laterale)	

MATERIALI E METODI (2)

Separato solido suino derivante da separazione meccanica $\stackrel{\textstyle \star}{\leftarrow}$ tal quale (Q) miscela con cippato (C)

	Q	С
Densità iniziale ρ ₀ (kg·m ⁻³)	250	450

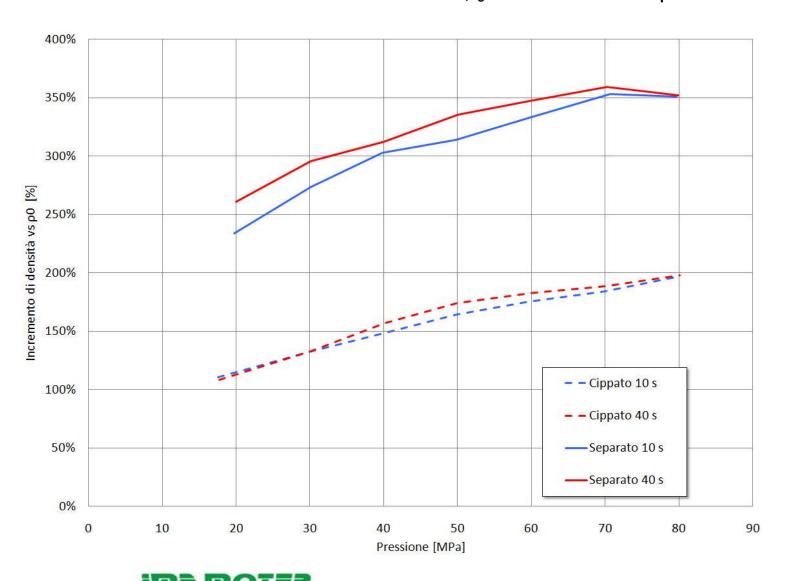

Sette livelli di pressione sul materiale (20, 30, 40, 50, 60, 70 e 80 MPa)

Due tempi di applicazione della pressione sul materiale (10 e 40 s)

Per ogni combinazione di tempo, pressione e materiale sono state effettuate 5 ripetizioni su campioni del peso di 60 g di materiale tal quale

RISULTATI E DISCUSSIONI (1)

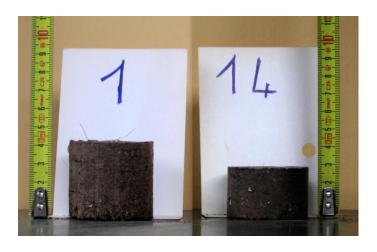
Relazione tra densità (valori teorici e dati sperimentali) e pressione applicata sui due differenti materiali organici


Densità calcolata sperimentalmente = $\frac{\text{massa del campione (kg)}}{\text{volume del campione (m}^3)}$

Modello di Bailey $\rho = \rho_0 + (A + Bp) (1 - e^{-cp})$

RISULTATI E DISCUSSIONI (2)

Incremento assoluto di densità riferito a ρ_0 in funzione della pressione


RISULTATI E DISCUSSIONI (3)

Incremento medio di densità riferito all'incremento di pressione

RISULTATI E DISCUSSIONI (4)

Valori medi di densità finale [kg·m⁻³] delle due tipologie di materiale ottenuti a sette differenti livelli di pressione applicata (20, 30, 40, 50, 60, 70 e 80 MPa)

Mataniala	Pressione [MPa]					D		
Materiale	20	30	40	50	60	70	80	
Q	964.19ª	1047.69 ^b	1136.56°	1211.89 ^d	1255.44°	1288.65 ^f	1337.66 ⁹	***
С	868.72ª	961.60 ^b	1042.23°	1059.96 ^d	1100.84°	1140.65 ^f	1129.159	***

^{***} Significatività per P < 0.01

a, b, c, d, e, f, g all'interno di ogni riga i valori che presentano lettere differenti sono caratterizzati da una differenza significativa (P(F) < 0.05)

RISULTATI E DISCUSSIONI (5)

Valori medi di densità finale [kg·m⁻³] delle due tipologie di materiale ottenuti con due differenti tempi di applicazione della pressione (10 e 40 s).

Materiale	Tem	P	
	10	40	P
Q	1167.35	1187.53	***
С	1028.38	1058.24	***

*** Significatività per P < 0.01

L'efficienza del processo di densificazione decresce all'aumentare della pressione applicata

L'efficienza del processo di densificazione decresce all'aumentare della pressione applicata

PROVE SPERIMENTALI AGGIUNTIVE

Tempo di applicazione della pressione — max 40 s

L'efficienza del processo di densificazione decresce all'aumentare della pressione applicata

PROVE SPERIMENTALI AGGIUNTIVE

Tempo di applicazione della pressione \longrightarrow max 40 s

PROVE SPERIMENTALI FUTURE

Determinazione della durabilità e della resistenza alla compressione, agli urti ed all'assorbimento di acqua dei campioni densificati

L'efficienza del processo di densificazione decresce all'aumentare della pressione applicata

PROVE SPERIMENTALI AGGIUNTIVE

Tempo di applicazione della pressione \longrightarrow max 40 s

PROVE SPERIMENTALI FUTURE

Determinazione della durabilità e della resistenza alla compressione, agli urti ed all'assorbimento di acqua dei campioni densificati.

Valutazione economica ed energetica dell'intero processo di densificazione quantificando la potenza in entrata, in uscita e dissipata dal sistema

L'efficienza del processo di densificazione decresce all'aumentare della pressione applicata

GRAZIE

DELL'ATTENZIONE!

Valutazione economica ed energetica dell'intero processo di densificazione quantificando la potenza in entrata, in uscita e dissipata dal sistema